Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation.

Identifieur interne : 000464 ( Main/Exploration ); précédent : 000463; suivant : 000465

The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation.

Auteurs : Sean L. Beckwith [États-Unis] ; Erin K. Schwartz [États-Unis] ; Pablo E. García-Nieto [États-Unis] ; Devin A. King [États-Unis] ; Graeme J. Gowans [États-Unis] ; Ka Man Wong [États-Unis] ; Tessa L. Eckley [États-Unis] ; Alexander P. Paraschuk [États-Unis] ; Egan L. Peltan [États-Unis] ; Laura R. Lee [États-Unis] ; Wei Yao [États-Unis] ; Ashby J. Morrison [États-Unis]

Source :

RBID : pubmed:29462149

Descripteurs français

English descriptors

Abstract

Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.

DOI: 10.1371/journal.pgen.1007216
PubMed: 29462149
PubMed Central: PMC5834206


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation.</title>
<author>
<name sortKey="Beckwith, Sean L" sort="Beckwith, Sean L" uniqKey="Beckwith S" first="Sean L" last="Beckwith">Sean L. Beckwith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Erin K" sort="Schwartz, Erin K" uniqKey="Schwartz E" first="Erin K" last="Schwartz">Erin K. Schwartz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Nieto, Pablo E" sort="Garcia Nieto, Pablo E" uniqKey="Garcia Nieto P" first="Pablo E" last="García-Nieto">Pablo E. García-Nieto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King, Devin A" sort="King, Devin A" uniqKey="King D" first="Devin A" last="King">Devin A. King</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gowans, Graeme J" sort="Gowans, Graeme J" uniqKey="Gowans G" first="Graeme J" last="Gowans">Graeme J. Gowans</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wong, Ka Man" sort="Wong, Ka Man" uniqKey="Wong K" first="Ka Man" last="Wong">Ka Man Wong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eckley, Tessa L" sort="Eckley, Tessa L" uniqKey="Eckley T" first="Tessa L" last="Eckley">Tessa L. Eckley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paraschuk, Alexander P" sort="Paraschuk, Alexander P" uniqKey="Paraschuk A" first="Alexander P" last="Paraschuk">Alexander P. Paraschuk</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peltan, Egan L" sort="Peltan, Egan L" uniqKey="Peltan E" first="Egan L" last="Peltan">Egan L. Peltan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Laura R" sort="Lee, Laura R" uniqKey="Lee L" first="Laura R" last="Lee">Laura R. Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yao, Wei" sort="Yao, Wei" uniqKey="Yao W" first="Wei" last="Yao">Wei Yao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Ashby J" sort="Morrison, Ashby J" uniqKey="Morrison A" first="Ashby J" last="Morrison">Ashby J. Morrison</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29462149</idno>
<idno type="pmid">29462149</idno>
<idno type="doi">10.1371/journal.pgen.1007216</idno>
<idno type="pmc">PMC5834206</idno>
<idno type="wicri:Area/Main/Corpus">000610</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000610</idno>
<idno type="wicri:Area/Main/Curation">000610</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000610</idno>
<idno type="wicri:Area/Main/Exploration">000610</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation.</title>
<author>
<name sortKey="Beckwith, Sean L" sort="Beckwith, Sean L" uniqKey="Beckwith S" first="Sean L" last="Beckwith">Sean L. Beckwith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwartz, Erin K" sort="Schwartz, Erin K" uniqKey="Schwartz E" first="Erin K" last="Schwartz">Erin K. Schwartz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Nieto, Pablo E" sort="Garcia Nieto, Pablo E" uniqKey="Garcia Nieto P" first="Pablo E" last="García-Nieto">Pablo E. García-Nieto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King, Devin A" sort="King, Devin A" uniqKey="King D" first="Devin A" last="King">Devin A. King</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gowans, Graeme J" sort="Gowans, Graeme J" uniqKey="Gowans G" first="Graeme J" last="Gowans">Graeme J. Gowans</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wong, Ka Man" sort="Wong, Ka Man" uniqKey="Wong K" first="Ka Man" last="Wong">Ka Man Wong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eckley, Tessa L" sort="Eckley, Tessa L" uniqKey="Eckley T" first="Tessa L" last="Eckley">Tessa L. Eckley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paraschuk, Alexander P" sort="Paraschuk, Alexander P" uniqKey="Paraschuk A" first="Alexander P" last="Paraschuk">Alexander P. Paraschuk</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peltan, Egan L" sort="Peltan, Egan L" uniqKey="Peltan E" first="Egan L" last="Peltan">Egan L. Peltan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Laura R" sort="Lee, Laura R" uniqKey="Lee L" first="Laura R" last="Lee">Laura R. Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yao, Wei" sort="Yao, Wei" uniqKey="Yao W" first="Wei" last="Yao">Wei Yao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Ashby J" sort="Morrison, Ashby J" uniqKey="Morrison A" first="Ashby J" last="Morrison">Ashby J. Morrison</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Chromatin Assembly and Disassembly (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genomic Instability (genetics)</term>
<term>Histone Acetyltransferases (metabolism)</term>
<term>Histones (metabolism)</term>
<term>Homeostasis (genetics)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Organisms, Genetically Modified (MeSH)</term>
<term>Protein Processing, Post-Translational (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétylation (MeSH)</term>
<term>Assemblage et désassemblage de la chromatine (génétique)</term>
<term>Histone (métabolisme)</term>
<term>Histone acetyltransferases (métabolisme)</term>
<term>Homéostasie (génétique)</term>
<term>Instabilité du génome (génétique)</term>
<term>Maturation post-traductionnelle des protéines (génétique)</term>
<term>Organismes génétiquement modifiés (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Histone Acetyltransferases</term>
<term>Histones</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromatin Assembly and Disassembly</term>
<term>Genomic Instability</term>
<term>Homeostasis</term>
<term>Metabolic Networks and Pathways</term>
<term>Protein Processing, Post-Translational</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Assemblage et désassemblage de la chromatine</term>
<term>Homéostasie</term>
<term>Instabilité du génome</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Histone</term>
<term>Histone acetyltransferases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Organisms, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Organismes génétiquement modifiés</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29462149</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007216</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1007216</ELocationID>
<Abstract>
<AbstractText>Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Beckwith</LastName>
<ForeName>Sean L</ForeName>
<Initials>SL</Initials>
<Identifier Source="ORCID">0000-0001-6559-1030</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwartz</LastName>
<ForeName>Erin K</ForeName>
<Initials>EK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García-Nieto</LastName>
<ForeName>Pablo E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Devin A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gowans</LastName>
<ForeName>Graeme J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Ka Man</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eckley</LastName>
<ForeName>Tessa L</ForeName>
<Initials>TL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paraschuk</LastName>
<ForeName>Alexander P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peltan</LastName>
<ForeName>Egan L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Laura R</ForeName>
<Initials>LR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrison</LastName>
<ForeName>Ashby J</ForeName>
<Initials>AJ</Initials>
<Identifier Source="ORCID">0000-0003-1228-5093</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM119580</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009302</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HG000044</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C483404">INO80 complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.48</RegistryNumber>
<NameOfSubstance UI="D051548">Histone Acetyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042002" MajorTopicYN="N">Chromatin Assembly and Disassembly</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042822" MajorTopicYN="N">Genomic Instability</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051548" MajorTopicYN="N">Histone Acetyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030781" MajorTopicYN="N">Organisms, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29462149</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1007216</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-17-02445</ArticleId>
<ArticleId IdType="pmc">PMC5834206</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20883-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 16;280(50):41207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16230350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Aug;6(5):777-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16879428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2004 Mar;11(3):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 16;290(42):25700-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26306040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2595-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 May 1;26(9):914-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22549955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 16;133(4):627-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 May;15(5):477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 May 2;6(9):1090-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17471029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jun 8;46(5):691-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;759:307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21863495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2016 Apr;22(4):369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26928463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2016 Jul 5;45:153-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27391925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Mar;5(3):e1000407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19300474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 May 20;42(4):536-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Nov;16(11):1167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Apr 22;18(8):566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18406137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jun;7(6):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16708073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Sep 12;154(6):1207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 May 12;6:7108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25964121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Sep 23;353(6306):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27708008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2014 Oct 15;28(20):2314-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25319830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2016 Jun;48(6):607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27158780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(7):R63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jan 28;164(3):550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26824661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Apr;20(4):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Nov;24(11):619-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25088669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Nov 5;163(4):1011-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26544944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Oct 8;163(2):506-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2014 Nov 1;28(21):2348-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25367034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 May;15(5):469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 May 28;141(5):739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20510918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27079975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Aug;42(8):715-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Dec 1;26(23):2590-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23207916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jun;10(6):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 29;474(7353):609-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21720365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 Apr 02;6(269):pl1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2015 Apr;33:125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25703630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 May;32(4):741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10361278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 12;446(7137):806-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Sep 12;154(6):1220-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2017 Oct 5;372(1731):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28847827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Aug;27(16):5639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2017 Oct 5;372(1731):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28847826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Apr 26;15(4):857-865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27149842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jul;12(1):147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Feb 19;16:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25765960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2015 Feb;22(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25627242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Apr;15(4):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18376411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Jan 24;49(2):346-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 30;488(7413):660-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2014 Jan 15;28(2):115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 09;6:6744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2010 Jul;67(13):2283-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Oct 4;490(7418):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23000897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2006 Dec;40(4):344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17101447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Apr 12;340(6129):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23580526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Feb;22(2):398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Discov. 2012 May;2(5):401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22588877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:273-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19355820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2016 Dec 27;13(12 ):e1002201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28027327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 16;303(5656):343-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 28;483(7391):603-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22460905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2016 Mar;22(3):298-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 May 10;7:11479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27161491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Nov;40(21):11036-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 17;119(6):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(14):6534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Sep 3;59(5):732-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2014 Sep 15;28(18):1999-2012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25228644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(10):R109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19814794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Sep 12;154(6):1246-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 4;123(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27343235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2012 Jan;44(1):54-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Oct 24;502(7472):489-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24153302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jul 05;30(15):3052-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 3;406(6795):541-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 3;330(6009):1385-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Aug 10;130(3):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Apr 16;58(2):371-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25801168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2016 Jan 11;36(6):979-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26755556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Feb 15;29(4):350-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25691465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 17;119(6):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Oct 6;167(2):553-565.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27693354</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Beckwith, Sean L" sort="Beckwith, Sean L" uniqKey="Beckwith S" first="Sean L" last="Beckwith">Sean L. Beckwith</name>
</region>
<name sortKey="Eckley, Tessa L" sort="Eckley, Tessa L" uniqKey="Eckley T" first="Tessa L" last="Eckley">Tessa L. Eckley</name>
<name sortKey="Garcia Nieto, Pablo E" sort="Garcia Nieto, Pablo E" uniqKey="Garcia Nieto P" first="Pablo E" last="García-Nieto">Pablo E. García-Nieto</name>
<name sortKey="Gowans, Graeme J" sort="Gowans, Graeme J" uniqKey="Gowans G" first="Graeme J" last="Gowans">Graeme J. Gowans</name>
<name sortKey="King, Devin A" sort="King, Devin A" uniqKey="King D" first="Devin A" last="King">Devin A. King</name>
<name sortKey="Lee, Laura R" sort="Lee, Laura R" uniqKey="Lee L" first="Laura R" last="Lee">Laura R. Lee</name>
<name sortKey="Morrison, Ashby J" sort="Morrison, Ashby J" uniqKey="Morrison A" first="Ashby J" last="Morrison">Ashby J. Morrison</name>
<name sortKey="Paraschuk, Alexander P" sort="Paraschuk, Alexander P" uniqKey="Paraschuk A" first="Alexander P" last="Paraschuk">Alexander P. Paraschuk</name>
<name sortKey="Peltan, Egan L" sort="Peltan, Egan L" uniqKey="Peltan E" first="Egan L" last="Peltan">Egan L. Peltan</name>
<name sortKey="Schwartz, Erin K" sort="Schwartz, Erin K" uniqKey="Schwartz E" first="Erin K" last="Schwartz">Erin K. Schwartz</name>
<name sortKey="Wong, Ka Man" sort="Wong, Ka Man" uniqKey="Wong K" first="Ka Man" last="Wong">Ka Man Wong</name>
<name sortKey="Yao, Wei" sort="Yao, Wei" uniqKey="Yao W" first="Wei" last="Yao">Wei Yao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000464 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000464 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29462149
   |texte=   The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29462149" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020